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Abstract
Despite numerous studies reporting sensory prediction errors - a key component of predictive 
processing theories - the nature of the surprise represented in these errors remains largely 
unknown. Here we highlight recent studies, which provide evidence that prediction errors, even in 
early sensory areas, may reflect high-level surprise, offering new insights into the role of predictive 
processing in the brain beyond classical accounts of redundancy reduction.  
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The brain has been described as a "prediction machine" that generates expectations about its environment 
to facilitate perception and decision-making [1,2]. Studies have demonstrated that neural responses are 
positively correlated to the amount of surprise that a stimulus elicits [3]. These studies conventionally 
compared neural responses between two conditions: predicted and surprising stimuli. In an experiment, 
these two categories can be well defined, e.g. by presenting specific temporal sequences of stimuli that 
define predicted and surprising stimuli. Indeed, experiments often use simple artificial stimuli (e.g., gratings) 
and manipulate one specific stimulus feature (e.g., orientation) to create these two conditions [4]. However, 
natural stimuli are complex constellations of many lower and higher-order features. Consequently, stimulus 
predictability naturally varies across many dimensions, which we argue is critical to investigate for charting 
the neurocomputational principles underlying perceptual inference. For example, if we move our eyes 
towards the location where we hear the honking sound of a car, we can strongly predict some features 
(e.g., specific rectilinear features and object size) while other features are completely unpredictable (e.g., 
the color of the car). In other words, a stimulus may be both predicted and surprising, depending on the 
specific features.  

In our opinion this poses a fundamental question: What does the visual system predict? Instead of 
focusing solely on the magnitude of prediction error responses, new research has attempted to expose the 
contents of prediction errors at different levels of the cortical hierarchy, which can elucidate the brain’s 
internal models and thereby constrain models of predictive processing. We refer to this new paradigm as 
feature-specific predictive processing. Using convolutional neural networks (CNN), which have successfully 
been used to study the encoding of natural images by the visual ventral stream [5], recent studies have 
started to investigate this by decomposing sensory surprise into lower- and higher-level visual features. 

First, Uran et al. [6] explored how spatial predictability in natural images influences neural 
responses in macaque V1. Spatial predictability here referred to how well an image part could be predicted 
by its spatial surround, which was quantified using an inpainting algorithm. Then, they quantified the 
difference in CNN (Fig 1A) activity patterns between the predicted and actual image patch, at low (early 
layers of the CNN, tuned to simple features like orientation and contrast) and high (late layers of the CNN, 
tuned to more complex features, such as objects and complex textures) levels, to determine low- and high-



level predictability. They then investigated how low- and high-level predictability modulated distinct aspects 
of neural activity (Fig 1B). V1 firing rates were weakly associated with low-level predictability but were 
strongly (and negatively) correlated with high-level predictability.  

Second, Heilbron and de Lange [7] used a similar analysis approach, investigating spatial 
predictability in mice. Results showed that visual cortical responses in mouse primary visual areas were 
again primarily modulated by high-level feature predictability. Moreover, this modulation by high-level 
predictability was most pronounced in superficial layers of V1. 

Third, Richter et al. used fMRI [8] and EEG [9] in humans to explore how temporal predictability 
affects the neural response in the visual ventral stream. Participants learned to expect a specific image 
given a cue. Following learning, participants were occasionally presented with a different, surprising, image, 
which could be differentially surprising in terms of low-level and high-level features. As expected, the 
‘bottom-up’ stimulus feature tuning profile adhered to the classical visual hierarchy: V1 was tuned for simple 
features, reflected in early layers of the CNN, while higher-order visual regions were tuned to more complex 
features, reflected in late layers of the CNN (Fig 1C, upper panel). Interestingly however, all visual areas 
from early occipital to higher-order ventral regions, including V1, were upregulated as a function of high-
level, but not low-level, surprise (Fig 1C, bottom panel) [8]. Moreover, these modulations by high-level 
surprise arose relatively early, within 200ms following stimulus onset [9]. 

 

 
Fig. 1 (A) Object classification CNNs (VGG-16 in Uran et al. [6], and AlexNet in Richter et al. [8,9]) were used to quantify 
stimulus predictability at different feature levels. (B) Correlation of macaque V1 neural activity with CNN predictability. 
Late multi-unit firing rates showed a significant increase in correlation across layers with image unpredictability, while 
γ-power showed a significant decrease. Figure adapted from Uran et al. [6]. (C) Representational similarity analysis 
showed a gradient from low-level to high-level visual feature processing along the ventral visual hierarchy during 
prediction-free contexts (top panel), with early visual cortex (EVC) aligning most with early CNN layers (cold colors) 
and higher visual areas more with late CNN layers (warm colors). In contrast, prediction error magnitudes increased 
with high-level visual feature surprise across the visual system, including in EVC (bottom panel). Figure adapted from 
Richter et al. [8]. 
 

We believe that despite differences in the type of predictions (spatial vs. temporal), populations 
studied (macaques, mice, humans), and recording methods (multi-unit, Neuropixel probes, fMRI, EEG), the 
above studies converge on a similar motif, namely that high-level visual surprise strongly drives neural 
activity, even in the earliest cortical visual areas, potentially as a result of feedback. Next, we discuss how 
these findings align with several models of predictive processing: 

(1) Hierarchical predictive coding (HPC). HPC is a major model of cortical function that posits 
that feedback signals predictions about neural representations in the lower hierarchical level, while 
feedforward connections convey prediction errors arising from the comparison between top-down 
predictions and local representations [2]. Arguably, HPC thereby entails that higher areas signal prediction 



errors about higher-order features, while prediction errors about lower-order features are signaled in lower 
areas, because each area generates errors relative to predictions from the next hierarchical level. Thus, 
we argue that the findings of Uran et al. [6], Heilbron and de Lange [7], and Richter et al. [8] that V1 activity 
increases for high- rather than low-level surprise may be difficult to reconcile with classic HPC 
implementations that depend on strict hierarchical error representation.  

(2) Feedback propagation of error signals. An alternative to classic HPC is that error signals are 
generated in higher hierarchical levels and transmitted to lower levels via feedback connections, where 
they lead to increased neural activity. V1 receives feedback from many higher-order sensory areas, allowing 
a direct modulation by top-down signals from many areas [10]. In this scenario, feedback could serve to 
increase attention [11], update synaptic weights, aid in learning and novelty detection [12], and recruit 
additional neural resources when surprising events are encountered. This class of models would predict 
that V1 activity increases for high-level surprise, which we believe is consistent with the observations of the 
studies summarized above [6–8]. In this case, error signals may act as a scalar surprise signal that gain-
modulates V1 responses, rather than subtract specific predictions [4]. 

(3) V1 as a comparator circuit for higher-level features. Another possibility, which we consider 
to be in line with these recent findings, is that low-level areas like V1 may act as a comparator circuit for 
higher-order features. Local features can provide evidence for objects, and object recognition can be 
approximated by globally averaging over many local evidence filters [13]. For example, a local patch of 
yellow in a V1 receptive field provides some evidence for a banana, a sun, or an autumn leave, and if 
feedback into V1 signals the prediction of a kiwi, a higher-order prediction error could result when a local 
feature is not compatible with the high-level prediction.  

(4) Dendritic HPC. The study of Uran et al. [6] showed that while high-level predictability modulated 
V1 firing rates, low-level prediction errors primarily affected 30-80 Hz gamma-band synchronization within 
V1. We consider the dissociation between firing rates and gamma-synchronization to fit well within the 
recently proposed dendritic HPC model. Here, low-level predictability should reflect an increased 
cancellation (and efficient encoding) of feedforward excitatory inputs by local inhibitory feedback, leading 
to a balanced excitation-inhibition state that promotes gamma-synchronization [14]. In dendritic HPC 
models [15], these feedforward prediction errors would be encoded at the basal dendrites of pyramidal 
neurons. The increase in V1 firing rates with higher-order predictability, on the other hand, should reflect 
prediction errors on the apical dendrites, which are the recipient of top-down feedback. Such apical 
prediction errors may lead to lasting increase in V1 firing rates by generating dendritic plateau potentials. 

Notably, V1 receives feedback from many higher-order areas [10], such that feedback concerning 
high-level features and error signals may reach it via direct projections. The fact that V1 receives feedback 
from many hierarchical levels, rather than only from the next level, as assumed in some predictive coding 
models, in our opinion provides a plausible anatomical basis for the finding that V1 activity signals mismatch 
signals about high-level features.  

Finally, does this feature-specific predictive processing strategy make sense from a behavioral 
standpoint? As the brain may be a “predictive machine” that continuously refines its internal models, a key 
question is: What are these predictions about? In principle, the brain could predict across all hierarchical 
levels, including fine-grained details of its sensory input, down to the level of pixels - as classic HPC models 
may suggest. However, higher-level features are likely more behaviorally relevant and may generally be 
easier to predict than lower-level features (e.g., rain vs individual drops of rain). Indeed, spatiotemporal 
prediction tasks like predicting future frames can be learned more effectively at the level of higher-order 
features rather than at the pixel level [16], and high-level predictions may be particularly effective for self-
supervised learning of visual representations [7]. Finally, high-level stimulus predictability shows stronger 
correlations with human perceptual similarity judgements and salience maps [6]. Thus, learning and 
behavior may be primarily guided by high-level predictability, and therefore we argue that perhaps the 
brain’s “prediction game” is focuses on high-level, not low-level features in its sensory input. 



Together, these studies demonstrate what kind of predictions the brain makes in richer, more 
naturalistic, environments. A future challenge will be to better integrate the relevant biological 
implementation principles (as outlined in e.g. dendritic HPC) with algorithmic and computational goals to 
generate a unified theory of predictive processing that spans across all of Marr’s levels of analysis. 
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